Dr. Marc Anthony Fusaro, Ph.D.
Director, Center for Business and Economic Development
and
Associate Professor of Economics

October 24, 2017
Emporia State Economic Index is a new measure of economic activity in Kansas
What’s Wrong with State GDP?

- The ultimate measure of the economy: GDP

- Look at the last year for Kansas:
 - 2016Q3 – Jul-Aug-Sept – $153,801
 - 2016Q4 – Oct-Nov-Dec – $154,574
 - 2017Q1 – Jan-Feb-Mar – $155,204
 - 2017Q2 – Apr-May-Jun – NA
 - 2017Q3 – Jul-Aug-Sept -- NA

- Two problems:
 - Timeliness
 - Frequency
How Can We Do Better?

- What do we know that is timely and frequent?
 - Employment Data
 - Housing Sales
 - Philadelphia Fed Coincident Index
 - Imports-Export Data
 - Sales Taxes
 - Oil Prices

- We use this data to estimate monthly state GDP
*Step 1: Use quarterly data to understand the relationship between GDP and those variables.

*Step 2: Use this knowledge to estimate monthly GDP.

*Step 3: Use the known quarterly data to correct the estimates.
Use quarterly data to understand the relationship between GDP and those variables.

- Data (quarterly historical)
 - GDP
 - Employment Data
 - Housing Sales
 - Philadelphia Fed Coincident Index
 - Imports-Export Data
 - Sales Taxes (OK)
 - Oil Prices (OK)

The ARIMA Model:

\[
GDP_i = \alpha_0 + \alpha_1 \text{Emp}_i + \alpha_2 \text{Home}_i + \alpha_3 \text{Philly}_i + \alpha_4 \text{Imports}_i + \alpha_5 \text{Exports}_i + \alpha_6 \text{Tax}_i + \alpha_7 \text{Oil}_i + \varepsilon_i
\]

Now we have coefficients: \(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \) and \(\alpha_7 \)
Estimated GDP: Step 2

Use this knowledge to estimate monthly GDP.

- Known (monthly, current data)
 - Employment Data
 - Housing Sales
 - Philadelphia Fed Coincident Index
 - Imports-Export Data
 - Sales Taxes (OK)
 - Oil Prices (OK)

- Known
 - Coefficients: α_i for $i = 1 .. 7$

- Unknown
 - GDP

The Simulation:

$$\hat{Y}_i = \alpha_0 + \alpha_1 \text{Emp}_i + \alpha_2 \text{Home}_i + \alpha_3 \text{Philly}_i + \alpha_4 \text{Imports}_i + \alpha_5 \text{Exports}_i + \alpha_6 \text{Tax}_i + \alpha_7 \text{Oil}_i$$

Now we have an estimate of monthly GDP (\hat{Y}).
Use the known quarterly data to correct the estimates.

- Condition 1: Adjusted monthly GDP averages to known quarterly GDP

\[\left(\bar{Y}_{\text{jan}} + \bar{Y}_{\text{feb}} + \bar{Y}_{\text{mar}} \right) / 3 = \text{GDP}_{Q1} \]

- Condition 2: growth rates of adjusted monthly GDP are in proportion to growth rates of simulated monthly GDP.

\[\frac{\bar{Y}_{\text{mar}}}{\bar{Y}_{\text{feb}}} = \gamma \frac{Y_{\text{mar}}}{Y_{\text{feb}}} \]

and

\[\frac{\bar{Y}_{\text{feb}}}{\bar{Y}_{\text{jan}}} = \delta \frac{Y_{\text{feb}}}{Y_{\text{jan}}} \]
We predict GDP for Kansas plus a 6-state reference group
From the GDP estimate, we calculate an Index

- First we calculate per capita GDP
 \[\text{GDP} / \text{Population} \]

- Then we rebase this estimate to the 2009 average across the states
 \[\text{Per Cap GDP} / \text{2009 per cap GDP average} \]
• KS is mid-pack
• KS leads MO
• AR trails
• AR is below 100
• NE sets the pace
Most recent activity

Economic Index Growth rate per state

*All numbers are in percentage

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>-0.10</td>
<td>0.01</td>
<td>0.41</td>
<td>0.14</td>
<td>0.165417</td>
<td>0.20</td>
<td>0.53</td>
<td>0.65</td>
<td>0.47</td>
<td>0.32</td>
<td>0.08</td>
<td>-0.21</td>
<td>-0.61</td>
<td>2.20</td>
</tr>
<tr>
<td>CO</td>
<td>0.58</td>
<td>0.56</td>
<td>-0.06</td>
<td>0.10</td>
<td>-0.23</td>
<td>0.17</td>
<td>0.26</td>
<td>-0.03</td>
<td>-0.01</td>
<td>0.48</td>
<td>0.30</td>
<td>-0.16</td>
<td>-0.04</td>
<td>1.35</td>
</tr>
<tr>
<td>IA</td>
<td>-0.15</td>
<td>-0.76</td>
<td>0.642114</td>
<td>0.22</td>
<td>0.77</td>
<td>-0.18</td>
<td>-1.57</td>
<td>1.26</td>
<td>-3.06</td>
<td>2.31</td>
<td>1.37</td>
<td>1.17</td>
<td>1.94</td>
<td>2.30</td>
</tr>
<tr>
<td>KS</td>
<td>-0.16</td>
<td>-0.43</td>
<td>0.50</td>
<td>0.47</td>
<td>0.02</td>
<td>0.44</td>
<td>-0.20</td>
<td>0.94</td>
<td>0.66</td>
<td>1.03</td>
<td>1.25</td>
<td>-0.07</td>
<td>4.06</td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td>0.92</td>
<td>-7.55</td>
<td>6.70</td>
<td>3.21</td>
<td>6.15</td>
<td>-1.48</td>
<td>-0.16</td>
<td>12.26</td>
<td>-6.13</td>
<td>13.52</td>
<td>-0.50</td>
<td>-0.35</td>
<td>7.90</td>
<td>4.70</td>
</tr>
<tr>
<td>NE</td>
<td>0.40</td>
<td>0.61</td>
<td>-0.19</td>
<td>0.11</td>
<td>0.14</td>
<td>0.09</td>
<td>-0.84</td>
<td>-0.06</td>
<td>-0.97</td>
<td>0.44</td>
<td>-0.34</td>
<td>-0.71</td>
<td>0.90</td>
<td>-0.84</td>
</tr>
<tr>
<td>OK</td>
<td>-0.21</td>
<td>0.22</td>
<td>0.26</td>
<td>-0.17</td>
<td>3.17</td>
<td>1.01</td>
<td>-2.76</td>
<td>1.04</td>
<td>2.27</td>
<td>-0.41</td>
<td>1.72</td>
<td>1.94</td>
<td>0.48</td>
<td>9.02</td>
</tr>
</tbody>
</table>

- KS has strong growth
- OK and MO are stronger
- NE has dropped a bit
Conclusion

- Monthly GDP is an innovative tool to understand and predict economic activity
- The new economic index is more timely and frequent than the BEA data
- New opportunities are open for:
 - economists to have a real-time economic indicator
 - businesses to follow consumption trends timely and predicts Peak times
 - researchers and students for their research/papers

Watch for the ESEI Data Every Month

Give me your business card and I will put you on our mailing list.