Overview

Introduction
 Motivation
 Literature

The Model
 Single Factor Model for Coincident Indicators
 Our State Space Form

The Data
 Choice of Indicators

Results
 Model 1
 Model 2

Next Steps
Develop Coincident and Leading Indicator for Hawaiʻi:

Philly Fed CEI are based on a fixed set of indicators similar to conference board national coincident index:

- non-farm payroll employment
- unemployment rate
- hours in manufacturing
- real wage and salary disbursements
Develop Coincident and Leading Indicator for Hawai‘i:

Philly Fed CEI are based on a fixed set of indicators similar to conference board national coincident index:

- non-farm payroll employment
- unemployment rate
- hours in manufacturing
- real wage and salary disbursements

Evaluate usefulness of new CEI/LEI:

Compare with Philadelphia CEI/LEI
Develop Coincident and Leading Indicator for Hawai‘i:
Philly Fed CEI are based on a fixed set of indicators similar to conference board national coincident index:
- non-farm payroll employment
- unemployment rate
- hours in manufacturing
- real wage and salary disbursements

Evaluate usefulness of new CEI/LEI:
- Compare with Philadelphia CEI/LEI
- Evaluate turning point prediction
Key papers in literature which develops and evaluates regional CEI/LEI

Following the literature, we use the Kalman Filter to estimate a dynamic single-factor, multiple-indicator model.

\[y_t = \alpha + \beta(L)s_t + \mu_t, \]
\[\phi(L)\mu_t = \epsilon_t, \]
\[\rho(L)s_t = \gamma + \eta_t, \]

where

- \(y_t \) is an \((nx1)\) vector of differenced logs of monthly indicators,
Following the literature, we use the Kalman Filter to estimate a dynamic single-factor, multiple-indicator model.

\[y_t = \alpha + \beta(L)s_t + \mu_t, \]
\[\phi(L)\mu_t = \epsilon_t, \]
\[\rho(L)s_t = \gamma + \eta_t, \]

where

- \(y_t \) is an \((nx1)\) vector of differenced logs of monthly indicators,
- \(s_t \) is an unobserved factor—the differenced log of state of the economy at time \(t \).
The Model
Single Factor Model for Coincident Indicators

Following the literature, we use the Kalman Filter to estimate a dynamic single-factor, multiple-indicator model.

\[
\begin{align*}
y_t &= \alpha + \beta(L)s_t + \mu_t, \\
\phi(L)\mu_t &= \epsilon_t, \\
\rho(L)s_t &= \gamma + \eta_t,
\end{align*}
\]

where

- \(y_t\) is an \((nx1)\) vector of differenced logs of monthly indicators,
- \(s_t\) is an unobserved factor—the differenced log of state of the economy at time \(t\).
- \(\mu_t\) is an \((nx1)\) vector of indicator idiosyncratic terms modeled as mutually uncorrelated AR processes.
The Model
Single Factor Model for Coincident Indicators

Following the literature, we use the Kalman Filter to estimate a dynamic single-factor, multiple-indicator model.

\[\begin{align*}
 y_t &= \alpha + \beta(L)s_t + \mu_t, \\
 \phi(L)\mu_t &= \epsilon_t, \\
 \rho(L)s_t &= \gamma + \eta_t,
\end{align*} \tag{1, 2, 3} \]

where

- \(y_t \) is an \((nx1)\) vector of differenced logs of monthly indicators,
- \(s_t \) is an unobserved factor—the differenced log of state of the economy at time \(t \).
- \(\mu_t \) is an \((nx1)\) vector of indicator idiosyncratic terms modeled as mutually uncorrelated AR processes.
- and \(\epsilon_t, \eta_t \) are vector and scalar (assumed) white noise processes, respectively.
The Model
Assumptions and restrictions

\[y_t = \alpha + \beta(L)s_t + \mu_t, \]
\[\phi(L)\mu_t = \epsilon_t, \]
\[\rho(L)s_t = \gamma + \eta_t, \]

Assumptions/Restrictions:

The idiosyncratic error vector, \(\mu_t \) is modeled as an AR(2) process.
The Model
Assumptions and restrictions

\[y_t = \alpha + \beta(L)s_t + \mu_t, \quad (1) \]
\[\phi(L)\mu_t = \epsilon_t, \quad (2) \]
\[\rho(L)s_t = \gamma + \eta_t, \quad (3) \]

Assumptions/Restrictions:

The idiosyncratic error vector, \(\mu_t \) is modeled as an AR(2) process.

The state, \(s_t \), is also modeled as an AR(2) processes
The Model
Assumptions and restrictions

\[y_t = \alpha + \beta (L) s_t + \mu_t, \quad (1) \]
\[\phi (L) \mu_t = \epsilon_t, \quad (2) \]
\[\rho (L) s_t = \gamma + \eta_t, \quad (3) \]

Assumptions/Restrictions:

The idiosyncratic error vector, \(\mu_t \) is modeled as an AR(2) process.

The state, \(s_t \), is also modeled as an AR(2) processes

Because all indicators, \(y_t \), are normalized, \(\alpha = \gamma = 0 \) by construction.
The Model
Assumptions and restrictions

\[y_t = \alpha + \beta(L)s_t + \mu_t, \quad (1) \]
\[\phi(L)\mu_t = \epsilon_t, \quad (2) \]
\[\rho(L)s_t = \gamma + \eta_t, \quad (3) \]

Assumptions/Restrictions:

The idiosyncratic error vector, \(\mu_t \) is modeled as an AR(2) process.

The state, \(s_t \), is also modeled as an AR(2) processes

Because all indicators, \(y_t \), are normalized, \(\alpha = \gamma = 0 \) by construction.

The idiosyncratic errors, and the error in the transition equation are restricted to have unit variance.
The Model
Assumptions and restrictions

\[y_t = \alpha + \beta(L)s_t + \mu_t, \] \hspace{1cm} (1)
\[\phi(L)\mu_t = \epsilon_t, \] \hspace{1cm} (2)
\[\rho(L)s_t = \gamma + \eta_t, \] \hspace{1cm} (3)

Assumptions/Restrictions:

The idiosyncratic error vector, \(\mu_t \) is modeled as an AR(2) process.

The state, \(s_t \), is also modeled as an AR(2) processes

Because all indicators, \(y_t \), are normalized, \(\alpha = \gamma = 0 \) by construction.

The idiosyncratic errors, and the error in the transition equation are restricted to have unit variance.

We write the state space form by treating both equations (2) and (3) as the transition equation and including both \(\mu_t \) and \(s_t \) in the state vector.
The Model
Our State Space Form: Measurement Equation

\[
\begin{bmatrix}
y_{1t} \\
y_{2t} \\
y_{3t} \\
y_{4t}
\end{bmatrix} =
\begin{bmatrix}
0 & \beta_{11} & \phi_1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \beta_{21} & 0 & 0 & \phi_2 & 0 & 0 & 0 & 0 \\
\beta_{30} & 0 & 0 & 0 & 0 & \phi_3 & 0 & 0 & 0 \\
\beta_{40} & 0 & 0 & 0 & 0 & 0 & \phi_4 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
S_t \\
S_{t-1} \\
\mu_{1t} \\
\mu_{1,t-1} \\
\mu_{2t} \\
\mu_{2,t-1} \\
\mu_{3t} \\
\mu_{3,t-1} \\
\mu_{4t} \\
\mu_{4,t-1}
\end{bmatrix}
\]
The Model

Our State Space Form: Transition Equation

\[
\begin{bmatrix}
S_t \\
S_{t-1} \\
\mu_{1t} \\
\mu_{1,t-1} \\
\mu_{2t} \\
\mu_{2,t-1} \\
\mu_{3t} \\
\mu_{3,t-1} \\
\mu_{4t} \\
\mu_{4,t-1}
\end{bmatrix}
= \begin{bmatrix}
\rho_1 & \rho_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & d_{11} & d_{12} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & d_{21} & d_{22} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & d_{31} & d_{32} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & d_{41} & d_{42} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
S_{t-1} \\
S_{t-2} \\
\mu_{1,t-1} \\
\mu_{1,t-2} \\
\mu_{2,t-1} \\
\mu_{2,t-2} \\
\mu_{3,t-1} \\
\mu_{3,t-2} \\
\mu_{4,t-1} \\
\mu_{4,t-2}
\end{bmatrix}
+ \begin{bmatrix}
\eta_t \\
\epsilon_{1t} \\
\epsilon_{2t} \\
\epsilon_{3t} \\
\epsilon_{4t}
\end{bmatrix}
\]
A first reaction to the Philadelphia Fed indicators. Are hours in manufacturing really useful in forming a CEI for Hawaiʻi:

Figure: Manufacturing vs Non-farm Jobs

Figure: Manufacturing Hrs. vs Non-farm Jobs
The Data

Choice of Indicators

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Employees on non-agricultural payrolls</td>
<td>Employees on non-agricultural payrolls</td>
<td>Employees on non-agricultural payrolls</td>
</tr>
<tr>
<td>Real personal income minus transfer payments (monthly)</td>
<td>Real wage & salary disbursements (quarterly)</td>
<td>Real wage & salary disbursements (interpolated)</td>
</tr>
<tr>
<td>Real manufacturing and trade sales</td>
<td>Avg. hours worked in manufacturing</td>
<td>Visitor arrivals</td>
</tr>
<tr>
<td>Industrial production</td>
<td>Unemployment rate</td>
<td>Unemployment rate</td>
</tr>
</tbody>
</table>

Model 1
- Real withholding tax revenue instead of wage & salary disbursements
- Real General Excise tax base instead of visitor arrivals

Model 2
- Real withholding tax revenue instead of wage & salary disbursements
- Real General Excise tax base instead of visitor arrivals
Sample starts in January of 1982 and runs through July 2017 (model 1), or January 2018 (model 2) after smoothing.
Sample starts in January of 1982 and runs through July 2017 (model 1), or January 2018 (model 2) after smoothing.

In Model 1, in place of indicators for Manufacturing, we use Visitor Arrivals.

In Model 2, we use monthly tax data instead of the interpolated real wage and salary disbursements. Excessive noise and outliers in the tax series lead us to use a 13 month centered moving average for smoothing.

Nominal series are deflated using the US Consumer price index, the Honolulu CPI history is predominantly semiannual. Similar to the Philadelphia state CEI models, we use non-farm payroll employment and the unemployment rate.
Sample starts in January of 1982 and runs through July 2017 (model 1), or January 2018 (model 2) after smoothing.

In Model 1, in place of indicators for Manufacturing, we use Visitor Arrivals.

In Model 2, we use monthly tax data instead of the interpolated real wage and salary disbursements.
Sample starts in January of 1982 and runs through July 2017 (model 1), or January 2018 (model 2) after smoothing.

In Model 1, in place of indicators for Manufacturing, we use Visitor Arrivals.

In Model 2, we use monthly tax data instead of the interpolated real wage and salary disbursements. Excessive noise and outliers in the tax series lead us to use a 13 month centered moving average for smoothing.
Sample starts in January of 1982 and runs through July 2017 (model 1), or January 2018 (model 2) after smoothing.

In Model 1, in place of indicators for Manufacturing, we use Visitor Arrivals.

In Model 2, we use monthly tax data instead of the interpolated real wage and salary disbursements.

Excessive noise and outliers in the tax series lead us to use a 13 month centered moving average for smoothing.

Nominal series are deflated using the US Consumer price index, the Honolulu CPI history is predominantly semiannual.
Sample starts in January of 1982 and runs through July 2017 (model 1), or January 2018 (model 2) after smoothing.

In Model 1, in place of indicators for Manufacturing, we use Visitor Arrivals.

In Model 2, we use monthly tax data instead of the interpolated real wage and salary disbursements.

Excessive noise and outliers in the tax series lead us to use a 13 month centered moving average for smoothing.

Nominal series are deflated using the US Consumer price index, the Honolulu CPI history is predominantly semiannual.

Similar to the Philadelphia state CEI models, we use non-farm payroll employment and the unemployment rate.
The Data
Model 1

Smoothed vs. Unsmoothed Employment (MA13)

Unemployment rate

Smoothed vs. Unsmoothed Wages (MA13)

Smoothed vs. Unsmoothed Visitor arrivals (MA13)
The Data
Model 1: retrended and scaled

Coincident indicators, retrended and scaled to Employment

Indicators
- Employment
- Unemployment
- Visitor Arrivals
- Wages
The Data
Model 2

Smoothed vs. Unsmoothed Employment (MA13)

Unemployment rate

Smoothed vs. Unsmoothed TGB (MA13)

Smoothed vs. Unsmoothed Income tax (MA13)
The Data
Model 2: retrended and scaled

Coincident indicators, retrended and scaled to Employment

Indicators
- Employment
- Income tax
- TGB
- Unemployment
Results

Model 1: Coefficient Estimates

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Employment</th>
<th>Unemployment</th>
<th>Wages</th>
<th>Visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td></td>
<td></td>
<td>0.0191</td>
<td>0.0066</td>
</tr>
<tr>
<td>β_1</td>
<td>0.0274</td>
<td>-0.0177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>-3.27e-7</td>
<td>3.70e-4</td>
<td>-2.79e-5</td>
<td>-2.35e-7</td>
</tr>
<tr>
<td>d_1</td>
<td>-0.1950</td>
<td>0.0017</td>
<td>0.0060</td>
<td>0.0706</td>
</tr>
<tr>
<td>d_2</td>
<td>0.3592</td>
<td>0.0111</td>
<td>0.220</td>
<td>0.0080</td>
</tr>
</tbody>
</table>

Autoregressive coefficients for the state variables

| ρ_1 | 1.8519 |
| ρ_2 | -0.8574 |
Results
Model 1: Normalized Index
Results
Model 1: re-trended and scaled to real GSP
Results

Model 2: Coefficient Estimates

<table>
<thead>
<tr>
<th>Coef.</th>
<th>Employment</th>
<th>Unemployment</th>
<th>GE Tax Base</th>
<th>Withholding Tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>0.0274</td>
<td>-0.0174</td>
<td>0.0091</td>
<td>0.0070</td>
</tr>
<tr>
<td>β_1</td>
<td>0.0041</td>
<td>-0.3948</td>
<td>0.1488</td>
<td>0.5636</td>
</tr>
<tr>
<td>ϕ</td>
<td>4.83e-5</td>
<td>3.35e-7</td>
<td>-2.59e-7</td>
<td>2.62e-8</td>
</tr>
<tr>
<td>d_1</td>
<td>0.0022</td>
<td>0.0376</td>
<td>0.4029</td>
<td>-0.0698</td>
</tr>
<tr>
<td>d_2</td>
<td>0.0022</td>
<td>0.0376</td>
<td>0.4029</td>
<td>-0.0698</td>
</tr>
</tbody>
</table>

Autoregressive coefficients for the state variables

| ρ_1 | 1.8556 |
| ρ_2 | -0.8608 |
Results
Model 2: Normalized Index

Normalized Index vs. Indicators

- Index
- Employment
- Income tax
- Index
- TGB
- Unemployment
Results
Model 2: retrended and scaled to real GSP

De-normalized Index vs. Indicators

Indicators
- CEI
- Employment
- GSP
- Income tax
- TGB
- Unemployment
Results
Comparing CEI

Model 1 (2012M1 = 100)
Philly Fed CEI
Model 2 (2012M1 = 100)

[Graph showing trends and comparisons]
Lots of work left to be done

Data cleaning and smoothing.
Lots of work left to be done

Data cleaning and smoothing.

Model quarterly income as monthly series.
Lots of work left to be done

Data cleaning and smoothing.

Model quarterly income as monthly series.

Explore optimal variance for added noise when dealing with corner solutions.
Lots of work left to be done

Data cleaning and smoothing.

Model quarterly income as monthly series.

Explore optimal variance for added noise when dealing with corner solutions.

Test for single factor and explore specification.
Lots of work left to be done

Data cleaning and smoothing.

Model quarterly income as monthly series.

Explore optimal variance for added noise when dealing with corner solutions.

Test for single factor and explore specification.

Once satisfied with CEI, move on to LEI and evaluate.